TI-Nspire & Lua / 常微分方程式の数値解法のまとめ (『パソコンで見る天体の動き』) / クラス化する

同じ処理を今度はクラス化する。


1. 古典的 Runge-Kutta 法
 構文: rkClassic({funcs}, t0, {inits}, h [, numOfDiv])


2. Shanks による 12 段 8 次の Runge-Kutta 法
 構文: rkShanks8({funcs}, t0, {inits}, h [, numOfDiv])


3. 特殊な方程式に対する Nyström 法 (5 次)
 構文: Nystroem({funcs}, t0, {inits}, {initsDot}, h [, numOfDiv])


4. Fehlberg 法 (6 段 5 次 & 4 次)
 構文: Fehlberg({funcs}, t0, {inits}, h [, tol])


5. 特殊な方程式に対する 4 段の Cowell 法
 構文: Cowell4({funcs}, t0, {pairsOfInits}, h)


6. 特殊な方程式に対する 7 段の Cowell 法
 構文: Cowell7({funcs}, t0, {pairsOfInits}, h)


7. 補外法
 構文: Extrapo({funcs}, t0, {inits}, h [,numOfDiv])


8. 特殊な方程式に対する補外法
 構文: Gragg({funcs}, t0, {inits}, {initsDot}, h [, numOfDiv])


9. Nspire の組込函数である rk23() も同じような形で使えるようにする。
 構文: 未


参考:

パソコンで見る天体の動き

パソコンで見る天体の動き